Deposition and Characterization of Heterostructures Based on Doped Ferrocene for Film-Device Applications

María Elena Sánchez Vergara, Emiliano Toledo Dircio, Rafael Imanol Zubillaga Serrano

Research output: Contribution to journalArticlepeer-review

Abstract

Novel heterostructures based on ferrocenium hexafluorophosphate (FcPF6), 2,6-dihydroxyanthraquinone (DHAQ) or 2,6-diaminoanthraquinone (DAAQ), zinc phthalocyanine (ZnPc) and nylon 11 were deposited by the high-vacuum thermal evaporation (HVTE) technique. Morphological and mechanical characterizations of these organic heterostructures FcPF6:DHAQ/nylon(ZnPc) and FcPF6:DAAQ/nylon(ZnPc) were carried out. Subsequently, corresponding optical parameters were calculated. The heterostructure with FcPF6:DHAQ presented the lowest optical band gap and fundamental band gap at 1.55 eV and 2.45 eV, respectively. The nylon(ZnPc) layer favors the optical behavior and places these heterostructures within organic low-bandgap semiconductor range. Additionally, devices were fabricated, and their electrical behavior was evaluated. The ITO/FcPF6:DHAQ/nylon(ZnPc)/Ag device exhibits ohmic behavior, and the ITO/FcPF6:DAAQ/nylon(ZnPc)/Ag device exhibits ohmic behavior at low voltages, but at V ≥ 5 V, its behavior changes to Space Charge Limited Current (SCLC). This device carries a maximum current of 0.02 A, three orders of magnitude higher than the current carried by the device with the DHAQ. The SCLC conduction mechanism showed a hole mobility of 9.27 × 10−8 (cm2)/Vs, the concentration of thermally excited holes of 3.01 × 1023 m−3, and trap concentration of 3.93 × 1021 m−3. FcPF6:DHAQ/nylon(ZnPc) and FcPF6:DAAQ/nylon(ZnPc) are potential candidates for organic devices as an emitter layer and active layer, respectively.

Original languageEnglish
Article number1859
JournalCoatings
Volume12
Issue number12
DOIs
StatePublished - 1 Dec 2022

Keywords

  • band gap
  • electrical properties
  • film
  • optical properties
  • organic heterostructure

Fingerprint

Dive into the research topics of 'Deposition and Characterization of Heterostructures Based on Doped Ferrocene for Film-Device Applications'. Together they form a unique fingerprint.

Cite this