TY - JOUR
T1 - Innovative incorporation of poly(3,4ethylenedioxythiophene)-poly(styrenesulfonate) as hole carrier transport layer and as anode for organic solar cells performance improvement
AU - Hamui, Leon
AU - Sánchez-Vergara, Maria Elena
AU - Corona-Sánchez, Ricardo
AU - Jiménez-Sandoval, Omar
AU - Álvarez-Toledano, Cecilio
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/12/1
Y1 - 2020/12/1
N2 - In this work, we present a comparative study of benzoid poly(3,4ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) as electrode and as hole carrier transport layer (HTL) in the manufacture of organic photovoltaic devices using Fischer metal-carbene complexes. The performance of the different devices was evaluated for solar cell applications. Scanning electronic microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the thin films that integrated the devices. A more ordered and crystallized active film microstructure is observed when using benzoid PEDOT:PSS as nucleation layer. The optical gap for both direct and indirect electronic transitions was evaluated from ultraviolet-visible spectroscopy data (UV-vis), as well as the absorption coefficient (α), and the values are in the range of 2.10–2.93 eV. Photovoltaic devices with conventional architecture, using two different chromium carbenes as active layers, were manufactured, and their electrical behavior was studied. The devices were irradiated with different wavelengths between the infrared and ultraviolet regions of the electromagnetic spectrum. Using the PEDOT:PSS film as hole carrier transport layer (HTL) decreases the slope on the ohmic and space charge limited current (SCLC) regions and eliminates the trap-charge limited current (T-CLC) mechanism. Furthermore, a saturation current of ~1.95 × 10−10 A and higher current values ~1.75 × 10−2 A at 4 V, ~4 orders in magnitude larger were observed. The PEDOT:PSS films as HTL in the devices reduced the injection barrier, thus showing a better performance than as anodes in this type of organic solar cells.
AB - In this work, we present a comparative study of benzoid poly(3,4ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) as electrode and as hole carrier transport layer (HTL) in the manufacture of organic photovoltaic devices using Fischer metal-carbene complexes. The performance of the different devices was evaluated for solar cell applications. Scanning electronic microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the thin films that integrated the devices. A more ordered and crystallized active film microstructure is observed when using benzoid PEDOT:PSS as nucleation layer. The optical gap for both direct and indirect electronic transitions was evaluated from ultraviolet-visible spectroscopy data (UV-vis), as well as the absorption coefficient (α), and the values are in the range of 2.10–2.93 eV. Photovoltaic devices with conventional architecture, using two different chromium carbenes as active layers, were manufactured, and their electrical behavior was studied. The devices were irradiated with different wavelengths between the infrared and ultraviolet regions of the electromagnetic spectrum. Using the PEDOT:PSS film as hole carrier transport layer (HTL) decreases the slope on the ohmic and space charge limited current (SCLC) regions and eliminates the trap-charge limited current (T-CLC) mechanism. Furthermore, a saturation current of ~1.95 × 10−10 A and higher current values ~1.75 × 10−2 A at 4 V, ~4 orders in magnitude larger were observed. The PEDOT:PSS films as HTL in the devices reduced the injection barrier, thus showing a better performance than as anodes in this type of organic solar cells.
KW - Electrical properties
KW - Fischer carbene
KW - Optical gap
KW - PEDOT:PSS
KW - Thin film
UR - http://www.scopus.com/inward/record.url?scp=85096862497&partnerID=8YFLogxK
U2 - 10.3390/polym12122808
DO - 10.3390/polym12122808
M3 - Artículo
AN - SCOPUS:85096862497
SN - 2073-4360
VL - 12
SP - 1
EP - 16
JO - Polymers
JF - Polymers
IS - 12
M1 - 2808
ER -