Modeling the electric field-guided motion of interacting carbon nanotubes using a dielectrophoretic framework

A. I. Oliva-Avilés, F. Avilés, V. V. Zozulya

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A theoretical investigation of the dynamic response of a pair of interacting carbon nanotubes (CNTs) dispersed in a liquid medium under the presence of an alternating current (AC) electric field is presented. The proposed modeling strategy is based on the dielectrophoretic (DEP) theory and classical electrodynamics, and considers the effect of an applied AC electric field on the rotational and translation motion of interacting CNTs represented as electrical dipoles. The mutual interaction between a pair of adjacent CNTs stems from the presence of DEP-induced charges on the CNTs and, as such, contributes to the rotational and translational dynamics of the system. Based on experimental evidence, the parameters which are expected to cause a major contribution to the CNTs motion are investigated for different initial configurations. Based on the obtained results, it is here predicted that high electric field frequencies, long CNTs, high values of electrical permittivity and conductivity of CNTs immersed in solvents of high polarity promote faster rotational and translational motion and therefore faster equilibrium conditions (CNT tip-To-Tip contact and horizontal alignment). The results incorporate important knowledge towards a better understanding of the complex mechanisms involved in the efforts of tailoring CNT networks by electric fields.

Original languageEnglish
Title of host publicationDevelopment and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Modeling, Simulation and Control of Adaptive Systems
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791857298
DOIs
StatePublished - 1 Jan 2015
EventASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2015 - Colorado Springs, United States
Duration: 21 Sep 201523 Sep 2015

Publication series

NameASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2015
Volume1

Conference

ConferenceASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2015
Country/TerritoryUnited States
CityColorado Springs
Period21/09/1523/09/15

Keywords

  • Carbon nanotubes
  • Computational modeling.
  • Dielectrophoresis

Fingerprint

Dive into the research topics of 'Modeling the electric field-guided motion of interacting carbon nanotubes using a dielectrophoretic framework'. Together they form a unique fingerprint.

Cite this