Cervix Type Classification Using Convolutional Neural Networks

Daniel A. Cruz, Carmen Villar-Patiño, Elizabeth Guevara, Marisol Martinez-Alanis

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

Cervical cancer is still a significant cause of death, especially in developing countries. The detection and correct treatment of the disease is vital in its early stages. One of the key factors in selecting appropriate treatment is the identification of the cervix type. The objective of this work is to propose a Convolutional Neural Network (CNN) architecture to perform a classification of the cervix from a set of images published by Intel and MobileODT. The proposed architecture is combined with a preprocessing algorithm based on an assembly of color models to select the region of interest in the image. The obtained model provides better results than other models in which transfer learning is used or there is no preprocessing stage.

Idioma originalInglés
Título de la publicación alojada8th Latin American Conference on Biomedical Engineering and 42nd National Conference on Biomedical Engineering - Proceedings of CLAIB-CNIB 2019
EditoresCésar A. González Díaz, Christian Chapa González, Eric Laciar Leber, Hugo A. Vélez, Norma P. Puente, Dora-Luz Flores, Adriano O. Andrade, Héctor A. Galván, Fabiola Martínez, Renato García, Citlalli J. Trujillo, Aldo R. Mejía
EditorialSpringer
Páginas377-384
Número de páginas8
ISBN (versión impresa)9783030306472
DOI
EstadoPublicada - 1 ene 2020
Evento8th Latin American Conference on Biomedical Engineering and the 42nd National Conference on Biomedical Engineering, CLAIB-CNIB 2019 - Cancún, México
Duración: 2 oct 20195 oct 2019

Serie de la publicación

NombreIFMBE Proceedings
Volumen75
ISSN (versión impresa)1680-0737
ISSN (versión digital)1433-9277

Conferencia

Conferencia8th Latin American Conference on Biomedical Engineering and the 42nd National Conference on Biomedical Engineering, CLAIB-CNIB 2019
País/TerritorioMéxico
CiudadCancún
Período2/10/195/10/19

Huella

Profundice en los temas de investigación de 'Cervix Type Classification Using Convolutional Neural Networks'. En conjunto forman una huella única.

Citar esto