Image Classification Applied to the Detection of Leather Defects for Smart Manufacturing

Alberto Ochoa-Zezatti, Oliverio Cruz-Mejía, Jose Mejia, Hazael Ceron-Monroy

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

In the shoe production workshops, animal leather is used as the main raw material. Generally, an operator manually checks the surface of the leather, making sure that it does not present defects that compromise the quality of the final product. This type of inspection is subject to human error and uncontrollable factors, which represents an opportunity for the automation of the process through a system of artificial vision. A data set was developed consisting of images of animal leather, in good coordination and with defects. The digitized samples were subjected to image processing using OpenCV and Scikit-Learn, and then used in a convolutional neural network interfacing, using TensorFlow’s Keras library in Python. Finally, the trained model is capable of classifying new images into two possible groups: “Defective Leather” and “Defect-free Leather”. The trained model offers 80% predictive accuracy and 85% reliability. Although the result can be considered satisfactory, it is expected to raise the mentioned percentage with a more robust data set than the one used for the project.

Idioma originalInglés
Título de la publicación alojadaComputer Science and Health Engineering in Health Services - 4th EAI International Conference, COMPSE 2020, Proceedings
EditoresJosé Antonio Marmolejo-Saucedo, Pandian Vasant, Igor Litvinchev, Roman Rodriguez-Aguilar, Felix Martinez-Rios
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas52-61
Número de páginas10
ISBN (versión impresa)9783030698386
DOI
EstadoPublicada - 1 ene 2021
Evento4th EAI International Conference on Computer Science and Health Engineering in Health Services, COMPSE 2020 - Virtual, Online
Duración: 26 nov 202026 nov 2020

Serie de la publicación

NombreLecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST
Volumen359
ISSN (versión impresa)1867-8211
ISSN (versión digital)1867-822X

Conferencia

Conferencia4th EAI International Conference on Computer Science and Health Engineering in Health Services, COMPSE 2020
CiudadVirtual, Online
Período26/11/2026/11/20

Huella

Profundice en los temas de investigación de 'Image Classification Applied to the Detection of Leather Defects for Smart Manufacturing'. En conjunto forman una huella única.

Citar esto