Robust multivariate methods for the analysis of the university performance

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

One of the most important problems among the methodological issues discussed in cluster analysis is the identification of the correct number of clusters and the correct allocation of units to their natural clusters. In this paper we use the forward search algorithm, recently proposed by Atkinson, Riani and Cerioli (2004) to scrutinize in a robust and efficient way the output of k-means clustering algorithm. The method is applied to a data set containing efficiency and effectiveness indicators, collected by the National University Evaluation Committee (NUEC), used to evaluate the performance of Italian universities.

Idioma originalInglés
Título de la publicación alojadaStudies in Classification, Data Analysis, and Knowledge Organization
EditoresMaurizio Vichi, Paola Monari, Stefania Mignani, Angela Montanari
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas285-292
Número de páginas8
ISBN (versión impresa)9783319557076, 9783319557229, 9783540238096
DOI
EstadoPublicada - 1 ene 2005
Publicado de forma externa
EventoBiannual meeting of the Classification and Data Analysis Group of the Italian Statistical Society, CLADAG 2003 - Bologna, Italia
Duración: 22 sept 200324 sept 2003

Serie de la publicación

NombreStudies in Classification, Data Analysis, and Knowledge Organization
Volumen0
ISSN (versión impresa)1431-8814
ISSN (versión digital)2198-3321

Conferencia

ConferenciaBiannual meeting of the Classification and Data Analysis Group of the Italian Statistical Society, CLADAG 2003
País/TerritorioItalia
CiudadBologna
Período22/09/0324/09/03

Huella

Profundice en los temas de investigación de 'Robust multivariate methods for the analysis of the university performance'. En conjunto forman una huella única.

Citar esto