Robust multivariate methods for the analysis of the university performance

Risultato della ricercapeer review

Abstract

One of the most important problems among the methodological issues discussed in cluster analysis is the identification of the correct number of clusters and the correct allocation of units to their natural clusters. In this paper we use the forward search algorithm, recently proposed by Atkinson, Riani and Cerioli (2004) to scrutinize in a robust and efficient way the output of k-means clustering algorithm. The method is applied to a data set containing efficiency and effectiveness indicators, collected by the National University Evaluation Committee (NUEC), used to evaluate the performance of Italian universities.

Lingua originaleEnglish
Titolo della pubblicazione ospiteStudies in Classification, Data Analysis, and Knowledge Organization
EditorMaurizio Vichi, Paola Monari, Stefania Mignani, Angela Montanari
EditoreSpringer Science and Business Media Deutschland GmbH
Pagine285-292
Numero di pagine8
ISBN (stampa)9783319557076, 9783319557229, 9783540238096
DOI
Stato di pubblicazionePublished - 1 gen 2005
Pubblicato esternamente
EventoBiannual meeting of the Classification and Data Analysis Group of the Italian Statistical Society, CLADAG 2003 - Bologna
Durata: 22 set 200324 set 2003

Serie di pubblicazioni

NomeStudies in Classification, Data Analysis, and Knowledge Organization
Volume0
ISSN (stampa)1431-8814
ISSN (elettronico)2198-3321

Conference

ConferenceBiannual meeting of the Classification and Data Analysis Group of the Italian Statistical Society, CLADAG 2003
Paese/TerritorioItaly
CittàBologna
Periodo22/09/0324/09/03

Fingerprint

Entra nei temi di ricerca di 'Robust multivariate methods for the analysis of the university performance'. Insieme formano una fingerprint unica.

Cita questo